Cross-linguistic pragmatic differences as a function of hyponym complexity viability

Danielle Dionne and Elizabeth Coppock

Department of Linguistics Boston University

LSA 2020, New Orleans

Outline

Introduction

Methodology

Selected Findings

Modelling

Conclusion

Fill in the blank!

She has a tattoo on her _____.

Fill in the blank!

She has a tattoo on her _____.

Somebody says: "She has a tattoo on her finger."'

Which picture are they talking about?

Quiz: How many fingers do people normally have?

10!

So thumb is a hyponym of finger.

Narrowing in opposition to a hyponym

Horn (1984): *finger* narrows in opposition to its hyponym, *thumb*, via Quantity and Manner.

Hearer thinks: If the speaker means 'thumb', she will say *thumb*, which is just as short (Manner), and more informative (Quantity).

Prediction: Since *big toe* is more complex than *toe*, there should be no narrowing of *toe* in opposition to *big toe*.

(On Manner, see also Kiparsky 1982, Aronoff 1976, Atlas & Levinson 1981, Horn 1972, McCawley 1978, Horn 1984, Horn 1991, Matsumoto 1995, Katzir 2007, Swanson 2010, Blutner 1998, 2000, van Rooy 2003, Jäger 2000, 2012, Frank & Goodman 2012, Goodman & Stuhlmüller 2013, Bergen et al. 2012, Bergen et al. 2016, Rett 2015, i.a.)

Somebody says: "She has a tattoo on her toe."

Which picture are they talking about?

Horn's conjecture

"We would predict that if the colloquial language replaced its *thumb* with the polymorphous *pollex* (the Latin and scientific English term for both 'thumb' and 'big toe'), the asymmetry [between *finger* and *toe*] would instantly vanish."

Geurts (2011), Quantity Implicatures

"It is important to note, however, that the adjective 'colloquial' is doing real work in this statement: it is not enough for an alternative word to be in the language; it has to be sufficiently salient, as well: if the word 'thumb' was rarely used, then presumably the asymmetry between would vanish too." Hey, that gives us an idea!

Spanish: *pulgar* 'thumb' (rare).

Digits in English and Spanish

English finger vs. thumb

Spanish dedo vs. pulgar

Outline

Introduction

Methodology

Selected Findings

Modelling

Conclusion

Design/Procedure

	TARGETS	Fillers
PRODUCTION (fill in the blank)	6 digits	6 other body parts (arm, leg, back)
COMPREHENSION (forced choice)	6 digit-pairs	6 other pairs (mix of easy/hard)

Order, left-right presentation randomized.

Participants (via Prolific)

ENGLISH SPEAKERS SPANISH SPEAKERS

PRODUCTION	24	23
Comprehension*	45	48

All different groups of participants.

*Only 1 English participant failed attention check

Outline

Introduction

Methodology

Selected Findings

Modelling

Conclusion

Thumb vs. ring finger (Production)

Thumb vs. ring finger

"She has a tattoo on her finger."

Horn was right: If English had *pollex*, the *finger* \Rightarrow 'not thumb' implicature would disappear.

Geurts was also right: It matters how colloquial an alternative is.

In Spanish, *pulgar* is not used as much, so it does not block *dedo* the way *thumb* blocks *finger*.

Support: *pinky* doesn't act like *thumb* (in Spanish or English).

Pinky (Production)

Ring finger vs. Pinky finger

"She has a tattoo on her finger."

The importance of 'viability'

Why doesn't *finger* (or *dedo*) imply 'not pinky'?

After all, *pinky* is just a single word, like thumb. So is *meñique*.

Horn says: "What is crucial is the status of *thumb* (as opposed to *pinky*)... as a viable lexicalized alternative to *finger*."

Furthermore, it's not clear that 'viability' is only relevant for *lexicalized* alternatives.

When we have two complex alternatives, and one is more 'viable' than another, we see an implicature here as well.

Example: *pinky toe* vs. *ring toe*.

Ring toe vs. Pinky toe (Production)

Ring toe vs. Pinky toe

"She has a tattoo on her toe."

Results: Summary

Taken together, our results support a Bayesian view of pragmatics, where listeners reason based on speaker production probabilities.

Outline

Introduction

Methodology

Selected Findings

Modelling

Conclusion

Bayesian Pragmatics (e.g. Frank & Goodman 2012)

The listener chooses an interpretation s of an utterance u based on the speaker's probability of producing u while intending to communicate s (and the prior probability of s):

 $L(s|u) \propto S(u|s) \cdot P(s)$

A Bayesian listener with perfect knowledge of how speakers behave matches our comprehension data extremely well.

Let us consider two models of the speaker S:

- Complexity-based (penalizing longer utterances)
- Production-based (perfect knowledge of speaker behavior)

Complexity-based speaker model

Given state s (a digit), the **speaker** chooses an utterance u based on accuracy and cost:

 $S(u|s) \propto \exp(\alpha \cdot L_0(s|u) - \beta \cdot \operatorname{length}(u))$

where:

• lpha is the 'rationality parameter'

$$(\alpha = 1)$$

 $(\beta = 2)$

- L₀(s | u) is the probability that a 'literal listener' will choose state s given utterance u
- β is the cost coefficient
- length = length in words

A **literal listener** assigns equal probability to every state compatible with the literal meaning, modulo the prior:

 $L_0(s \,|\, u) \propto \llbracket u \rrbracket(s) \cdot P(s)$

Literal meanings (English)

Six underlying states (digits); we hand-specified literal meanings for each utterance as a set of states.

utterance	thumb	ring finger	pinky finger	big toe	ring toe	pinky toe
big toe						
toe						
fourth toe						
little toe						
ring toe						
second to last toe						
small toe						
baby toe						
pinky toe						
smallest toe						
thumb						
finger						
ring finger						
pinky						
pinky finger						

Literal meanings (Spanish)

utterance	thumb	ring finger	pinky finger	big toe	ring toe	pinky toe
dedo						
dedo de la mano						
mano						
dedo gordo						
dedo pulgar						
pulgar						
dedo gordo de la mano						
pulgar de la mano						
anular						
dedo anular						
dedo como anillo						
dedo anular de la mano						
dedo chiquito						
dedo menique						
menique						
menique de la mano						
dedo del pie						
pie						
dedo gordo del pie						
pulgar del pie						
cuarto ortejo						
dedo anular del pie						
penultimo dedo del pie						
indice						
dedo chico del pie						
dedo chiquito del pie						
dedo menique del pie						
dedo pequeno del pie						
menique del pie						
quinto ortejo						

Complexity-based model: Summary

The **pragmatic listener** chooses an interpretation based on the speaker:

$$L(s|u) \propto S(u|s) \cdot P(s)$$

The **speaker** chooses an utterance based on accuracy and cost:

$$S(u|s) \propto \exp(\alpha \cdot L_0(s|u) - \beta \cdot \operatorname{length}(u))$$

A literal listener chooses a true interpretation at random:

$$L_0(s \mid u) \propto \llbracket u \rrbracket(s) \cdot P(s)$$

Complexity-based model results

Signpost

We are considering two models of the speaker:

- Complexity-based
- Production-based

The speaker chooses an utterance based on empirically observed frequencies in our production data:

 $S(u \,|\, s) \propto F(u \,|\, s)$

where F(u|s) is the frequency with which utterance u was used in our production experiments to describe state s.

Production-based model results

Model comparison

R^2 for complexity model = 30.6; R^2 for production model = 76.3

Outline

Introduction

Methodology

Selected Findings

Modelling

Conclusion

Two main conclusions

- The implicatures that an expression gives rise to are affected by the viability of its alternatives. Alternatives are differently viable in different languages; hence cross-linguistic pragmatic differences.
- Viability is tied to production probability, and complexity is not all there is to it. In other words: listeners are Bayesian, with good models of speaker production probability.

Questions to explore further

- Why do speakers do what they do? (Ngram frequency not helpful as far as we can see...)
- How should complexity be measured?
- What is the significance of dispersion (many alternatives)?
- Does bilingalism affect alternatives?
- Where else might we find cross-linguistic pragmatic differences that arise due to viability of alternatives?
 - Collins (2016) on definiteness in Tagalog
 - Chemla (2007) (no both in French, yet [?]all his arms)
 - <u>ا ا ا</u>
 - You and Your Collaborator (2021)?

References I

- Aronoff, Mark. 1976. *Word formation in generative grammar*. Cambridge, MA: MIT Press.
- Atlas, Jay & Stephen Levinson. 1981. It-clefts, informativeness, and logical form: radical pragmatics (revised standard version). In Peter Cole (ed.), *Radical pragmatics*, 1–61. New York: Academic Press.
- Bergen, Leon, Noah D. Goodman & Roger Levy. 2012. That's what she (could have) said: How alternative utterances affect language use. In *Proceedings* of the thirty-fourth annual conference of the cognitive science society, 120–125. Cognitive Science Society.
- Bergen, Leon, Roger Levy & Noah Goodman. 2016. Pragmatic reasoning through semantic inference. Semantics & Pragmatics 9(20). 1–83.
- Blutner, R. 2000. Some aspects of optimality in natural language interpretation. *Journal of Semantics* 17(3). 189.
- Blutner, Reinhard. 1998. Lexical pragmatics. *Journal of Semantics* 15(2). 115–162.
- Chemla, Emmanuel. 2007. French *both*: A gap in the theory of antipresupposition. *Snippets* 15. 4–5.

References II

- Collins, James. 2016. Definiteness and implicatures in Tagalog. Ms., Stanford University.
- Frank, Michael C. & Noah D. Goodman. 2012. Predicting pragmatic reasoning in language games. *Science* 336(6084). 998.
- Geurts, Bart. 2011. *Quantity implicatures*. Cambridge: Cambridge University Press.
- Goodman, Noah D. & Andreas Stuhlmüller. 2013. Knowledge and implicature: Modeling language understanding as social cognition. *Topics in Cognitive Science* 5(1). 173–184.
- Horn, Laurence. 1984. Toward a new taxonomy for pragmatic inference: Q-based and R-based implicature. In Deborah Schiffrin (ed.), *Meaning, form, and use in context: Linguistic applications*, 11–42. Washington, DC: Georgetown University Press.
- Horn, Laurence. 1991. Duplex negatio affirmat... the economy of double negation. *Chicago Linguistics Society* 27. 80–106.
- Horn, Laurence R. 1972. On the semantic properties of logical operators in English. Doctoral dissertation, University of California, Los Angeles.

References III

- Jäger, Gerhard. 2000. Some notes on the formal properties of bidirectional optimality theory. *ZAS Papers in Linguistics*.
- Jäger, Gerhard. 2012. Game theory in semantics and pragmatics. *in Maeinborn et al.* (2012) 2487–2425.
- Katzir, Roni. 2007. Structurally-defined alternatives. *Linguistics and Philosophy* 30(6). 669–690.
- Kiparsky, Paul. 1982. Word formation and the lexicon. In F. Ingemann (ed.), *Proceedings of the 1982 Mid-America Linguistic Conference*, 3–32. University of Kansas, Lawrence, KS.
- Krifka, Manfred. 1989. Nominal reference, temporal constitution and quantification in event semantics. In Renate Bartsch, Johan van Benthem & Peter van Emde Boas (eds.), *Semantics and contextual expression*, 75–115. Dordrecht, Netherlands: Foris.
- Matsumoto, Yo. 1995. The conversational condition on horn scales. *Linguistics* and philosophy 18(1). 21–60.
- McCawley, J.D. 1978. Conversational implicature and the lexicon. In Peter Cole (ed.), *Syntax and semantics, volume 9: Pragmatics,* 245–259. Academic Press.

- Rett, Jessica. 2015. The semantics of evaluativity. Oxford University Press.
- van Rooy, Robert. 2003. Relevance and bidirectional ot, in reinhard blutner & henk zeevat (eds.). *Pragmatics in optimality theory* 173–210.
- Swanson, Eric. 2010. Structurally defined alternatives and lexicalizations of xor. *Linguistics and Philosophy* 33(1). 31–36.
- Teodorescu, Viorica Alexandra. 2009. *Modification in the noun phrase: the syntax, semantics, and pragmatics of adjectives and superlatives*: University of Texas at Austin dissertation.
- van Rooij, Robert. 2003. Negative polarity items in questions: strength as relevance. *Journal of Semantics* 20. 239–73.